A new definition to the phase operator and its properties*
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By introducing a series of mathematical symbols and the phase quantization
condition, we give a new definition of the phase operator, which not only is made
directly in infinite state spaces, but also circumvents all difficulties appearing in the
traditional approach. Properties of the phase operator and its expressions in some
widely-used representations are also given.
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1. Introduction

The phase operator is very important in the quantum optics and field theory. But as
was clearly pointed out by Susskind and Glogower([2], there are many difficulties in
the traditional definition of the phase operator[1,2]. The traditional approach required
that the Hermitian number and phase operator were combined in a polar
decomposition of the annihilation operator:

= expfid) 7, ©

and supposcd that they satisfied the following commutator
[79, 1\‘;] =i, )
But the commutator(2) gives rise to inconsistency when its matrix elements are
calculated in a number-state basis and the uncertainty relation ANAGz% derived

from Eq.(2) implies that a number state has infinite phase uncertainty which
contradicts to the periodic nature of the phase. Furthermore, the exponential operator
cxp(i &) in this approach is not unitary so it does not define a Hermitian . Recently,

there appeared many developments on this problem[3-8). Especially Pegg and Barnett
defined a phase operator in a finite-dimensional state space[3,4] and the definition has
been widely used. This definition circumvents the difficulties in the traditional
approach at the price that it is limited to a finite state space, the dimension of which is
allowed to tend to infinity only after physically measurable results, such as
expectation values, are calculated. It is now often accepted that a well-behaved
Hermitian phase operator does not exist in infinite state spaces{2-4]. In this paper we
give a new approach to the definition of the phase operator. We have defined a
Hermitian phase operator directly in infinite state spaces. By introducing a series of
mathematical symbols and the phase quantization condition, we have overcome the
above-mentioned difficulties in the traditional approach. As a result of being defined
directly in infinite state spaces, the phase operator here has very succinct expressions
in some widely-used representations which make it very convenient for use.

1 . Definition of the phase operator
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We consider the quantized single-mode boson field. In this system, the dimension of
the state space determined by the Hamitonian 4 is countable-infinite and all the

eigenstates of the number operator N make a complete basis. So an operator is well
defined if its action on an arbitrary eigenstate of the number operator is given. We
define the phase operator as the infinitesimal displacement operator of the number
basis. So to determine the phase operator, we first give the following definition of an

unitary displacement operator /) of the number basis:
Bmy=|n-1) (a=0), 3
Djoy=|P, - 1), )
where P = ..hﬂ m! . Some explanation need be added to the definition equation(4).

Firstly, one may just suppose Dlo) = 0. But this idea leads to- contradiction. It makes
D not unitary. By intuition, the displacement operator /) should transform |0) to

another eigenstate of . Secondly, one may let D0} =|w) But the state |co) is not
well defined because oo is not a simple number. Though P_ —1 is also infinity, the
states | P, —1) and |wo) still have discriminations. The state |oo) just indicates that
the eigenvalue of N tends to infinity. It does not show the mode of tendency. For
cxample, when 5 — oo, the states |2n) and |2n—1) can all be written as |09) but
these two states are not same because they are orthogonal. Though the discrimination
between the states | P, —1) and |co) is mot important to the final physical results
because the states |n) when  — o have no contribution to usual physical states, it
plays a important role in defining a self-consistence Hermitian phase operator because
our definition is made directly in infinite state spaces and is not in view of concrete
physical states. The mode of tendency to infinity must be determined in this situation.
Equation(4) indicates that ) transforms |0) to an cigenstate of & with an
cigenvalue tending to infinity and the mode of tendency is given by the sequence
{,,!_ L(n+1)-1,(n+2) 1,} So D is completely defined and we will see this
definition of 5 makes a good foundation for the definition of a Hermitian phase
operator in infinite state spaces.
In the number representation ) defined by Eqgs.(3)(4) has the matrix form

N

(0 1 0 -~ 0 0)
o 01 ... 0 O
o 0 0 -« 0 0
D=~li_2[ on!. &)
0 0 O 0 1
\1 0 0 0 o0/
Its cigenvalues have the expression .
d=¢%=¢e*". (6)

When 7 — oo, the value of 7 is limited to rational numbers and also e'2” with any
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rational » is the eigenvalue of ). Writing the eigenstate of ) with the eigenvalue
e'? as |g) ,we have

1310)=e“9|9), N
where @ satisfies the discrete condition '
: 8=2m (reR) 8)

and R is the rational number set. Combining Eq.(7)X8) with Eqgs.(3)X4), we get the
transition function between the number and the phase representation
(6]n) = 4™, ®)
where A is a normalization constant.
Before giving the correct normalization of the states |9) , we make two

preparations. Firstly, from the countability of the rational number set, all g between
@, and g, satisfying the discrete condition (8) can be numbered as 4,,6,, ,0,,
We introduce a symbol called discrete integration indicated by Id,H to represent the

mean value of the function f(0) over all g between @, and g, satisfying the
discrete condition, et.al. ,
1 6 defne 1 & —

5 g/ O 0=im 3 1(0)=1(6). 10)
The definition domain of the function f(g) can be extended analytically to the real
number set (the function after analytical extension is unique and will be still indicated
by f(B)-) Because the rational number set is dense in the real number set, it is
evident that

1 = 1
G5 1 O40=TO= 5], 10 o

So the discrete integrétion can be expressed by the real integration. Secondly, we
introduce a periodic & — function (indicated by §..). The definition of &, is

5:(6) = 6,(6+27), (12)
5:(6)=0 (0=2%knkeZ), (13)
[" 6.(0)do=1. (14)

The symbol Z in Eq.(13) represents the integer set. If the definition domain of the
function §,(6) is limited to all @ satisfying the discrete condition, it becomes the
periodic discrete & — function and the integration in Eq.(14) should be replaced by the
discrete integration.

Having these preparations, we can prove that the states |0) satisfy the normalization

{8,|6,)=6.(6,-6.) (15)
and the complete equation
8y+2nm A

) T leXeld. 0 =1 (16)

when we make the normalization constant

1

A= —— 17
N an
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Equation (15) and (16) suggest that the states ,9) in an arbitrary 25 interval
[65.6, +2s] satisfying the discrete condition make an orthogonal and normalized

complete basis.

With above preparations, the phase operator now can be easily given. § corresponds
to the infinitesimal displacement operator of the number basis and it has the following
relation with the displacement operator .

o=1mb. (18)
1
So from Eq.(7) in the phase representation & can be expressed as

6= I: " 46)6ld.0, (19)

where g, is arbitrary. The arbitrary 6, is merely the reflection of the periodic nature
of the phase.

From the definition , we know the eigenvalues of @ cannot be any real number, it
must be 27 times a rational number. This confiction can be called phase quantization
condition and its explicit form is given here for the first time. This condition suggests
that the eigenvalues of § cannot change continuely though their change can be
infinitesimal. This picture is different from that given by the classical phase, but it is
natural and necessary. Here the phase operator is defined in a countable-infinite state
space, in which the number of independent vectors cannot be beyond countable-
infinite, but the eigenvectors of § with different eigenvalues are orthogonal and
independent, so the eigenvalues of # cannot be continue and at most be countable-
infinite. This leads to the phase quantization condition. The condition is very
important for a self-consistence definition of the phase operator in infinite state
spaces.

Il. Phase-number commutator and
expressions of the phase operator in some widely-used representations

Starting from the phase operator defined in the above section, we can give the
expression of the number operator in the phase representation and the phase-number
commutator. Firstly we introduce a symbol called discrete differentiation

7 define 5
6)=—1r (x)} . (20)
a0, 7(6.) Ox /( )Lo,

where f(x) is the analytical extension of f(4,) to the real number set . Then the
number operator in the phase representation has a succinct form:

o E°+2‘|9)i%<0|d,9. @y
From Eq.(21) , we get the phase-number commutator
[9.8]= i[f—ZmFT(a—Go)]- (22)

If we limit the phase value to [4,,8, +2#] in the classical case , the commutator
given by Eq.(22) just equals ;4 times the classical Possionian bracket[4]. This fact
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shows that the definition here is reasonable. The mean value of Eq.(22) over a
physical state | p) gives the result obtained in Ref. [4]

(pl{ﬁ', 79]] p) = 1-227(8,)]> (23)
where P(8,)=|(6,|p) is the probability that the phase of the state is §,. The
phase-number uncertainty relation is

<(Al\7)2><(A§)2> > %[1 ~227(6,)] - (29)

Further we give direct expressions of the phase operator in the number and coherent
representations. They bave succinct and useful expressions which benefit from the
fact that we have defined the phase operator directly in infinite state spaces.

In the number representation the phase operator have the following expression

- 10
0= 2 nl, 25
pLad @3
where the symbol -gz_ represents the discrete diferentiation defined by Eq.(20).

Noticing that f(x) is equivalent to f(n)e™™ (k €Z) and l_;f; #(n) is different
I
10

from 'Il'%[f (n)e'z""'] with a difference 2kx, we know that after r acts on a

function f(n) there may appears a difference 2k . This fact also results from the
periodic nature of the phase and we avoid the arbitary 2kz by limiting the mean
value of § in Eq.(25)to [6,,6, + 27] -

Equation.(25) is very convenient for use because usual physical states are easy
expanded by Fock states and then using Eq.(25) we can analyse phase properties of
the states by simple differentiation.

Now we give an approximate form of the phase operator expressed by the
annihilation and cretion operators 4,4* when the mean photon number (ﬁ) >>1- The
result is

- 1
8~-: lma-mla*a+1):,
& p a ln(a a+ ) (26)
where the symbol : : represents normal product. Using Eq.(26) we get the approximate
expression of the phase operator in the coherent representation when the mean photon

number is large.
a% “a)%[lna—ln(‘af +l)](a|d2a. @n

* This project is supported by the National Natural Foundation of China
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